Inhibiting Protein Amyloid Aggregation with Nanoparticles

Feng Ding

Department of Physics and Astronomy, Clemson University, Clemson, SC 29634
Protein misfolding diseases

- An increasing list of protein misfolding diseases
 - Alzheimer’s disease – Aβ
 - Parkinson’s disease – α-synuclein
 - Huntington’s disease – huntingtin
 - Type-2 Diabetes – Islet Amyloid Polypeptide
 - Amyotrophic Lateral Sclerosis – SOD1

- Common hallmarks
 - Fibrillar aggregates – regular structures from different precursors
 - Long process; rare nucleating events
 - Symptoms typically appear in mid to later life (50-70 years)

Amyloid fibril – the common cross-beta structure

Nucleation Process – Sigmoidal Kinetics

Inhibitor design – targeting each of the step
Nanoparticles as catalysts for protein fibrillation

Linse S. et al, PNAS 104:8691-6, 2007
Colvin VL and Kulinowski KM, PNAS 104:8679-8, 2007
Aggregation promoting or inhibiting – the contrasting effects of NPs?

<table>
<thead>
<tr>
<th>Nanoparticles</th>
<th>Proteins</th>
<th>Effects on Amyloid Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-walled CNT, QDs, Copolymer NP, CeO$_2$ NP23</td>
<td>β-2 microglobulin</td>
<td>Promotion</td>
</tr>
<tr>
<td>TiO$_2$ NP43</td>
<td>Aβ</td>
<td></td>
</tr>
<tr>
<td>AuNP75</td>
<td>lysozyme</td>
<td></td>
</tr>
<tr>
<td>Graphene oxide67</td>
<td>Aβ</td>
<td></td>
</tr>
<tr>
<td>AuNP45</td>
<td>Aβ</td>
<td>Inhibition</td>
</tr>
<tr>
<td>CNT42</td>
<td>Aβ$_{16-22}$</td>
<td></td>
</tr>
<tr>
<td>Carbon Dots76</td>
<td>Insulin</td>
<td></td>
</tr>
<tr>
<td>Polymeric NP68</td>
<td>Aβ</td>
<td>Either promotion or inhibition</td>
</tr>
<tr>
<td>Polystyrene NP37</td>
<td>Aβ</td>
<td></td>
</tr>
</tbody>
</table>

Q: What are the **determinants** of NPs and/or proteins for the complex and seemingly contrasting behaviors?

Objective – Amyloid-inhibiting nanomedicine
Outline

- Multiscale modeling approach
 - DMD simulations
 - Multiscale models
- Uncovering the effects of NPs on protein aggregation
 - Varying NP-Protein attractions
 - Competing aggregation in solution and on NP surface
 - A complete picture of protein aggregation influenced by NPs
- Applications of anti-amyloid Nanomedicine
 - Graphene oxide
 - Dendrimer
Challenges in computational modeling: multiscale modeling

Large gaps of time and length scales between experimental observation and the underlying molecule system

Approaches:
Enhanced sampling methods
Simplified protein models

Ding F. and Dokholyan N.V., Trends in Biotechnology, (2005)
Enhanced MD method: DMD

\[m \ddot{\alpha}_i = \sum_j \vec{F}_{ij} \]

Dynamics become event-driven:
- collision prediction,
- sorting for next collisions,
- updating the colliding atoms

Alder and Wainwright, J. Chem. Phys. 27:1208 (1957);
Zhou Y and Karplus M, PNAS, 94, 14429 (1997);
Multi-scale protein models

Two-Bead

Time scale: \(~\text{seconds-hours}\)
Applications: Protein folding/misfolding, Protein aggregation,

Four-Bead

Time scale: \(~\text{seconds}\)
Applications: 2nd structure transition, Protein folding/misfolding, Protein aggregation

Pseudo all-atom

Time scale: \(~\mu\text{s-ms}\)
Applications: Protein folding/misfolding, aggregation of short peptides

All-atom

Time scale: \(~\mu\text{s}\)
Applications: Folding of small proteins; near-native dynamics; and protein unfolding

Multiscale DMD simulations

Ab initio protein folding

Coarse-grained simulation of protein aggregation

Outline

- Multiscale modeling approach
 - DMD simulations
 - Multiscale models

- Uncovering the effects of NPs on protein aggregation
 - Varying NP-Protein attractions
 - Competing aggregation in solution and on NP surface
 - A unified picture of protein aggregation influenced by NPs

- Applications of anti-amyloid Nanomedicine
 - Graphene oxide
 - Dendrimer
Coarse-grained modeling of NPs

Effects: NP-protein attractions (affinities), relative concentrations, competition between bulk and surface, etc.

Complex effects of NP-Protein attractions on protein aggregation
The dependence of protein surface concentration on NP-Protein attractions

Increasing NP-protein attractions leads to more proteins on NP surface
The dependence of diffusion on NP-protein attractions

Increasing NP-protein attractions leads to **decreased protein diffusion** on NP surface.
Dependence of protein concentrations (fixed attraction)

Aggregation on NP surface is concentration dependent
Effect of relative protein/NP concentration
A multi-factorial effects of NPs on aggregation

Conditional promotion (concentrations)

inhibition

Depends on NPs and Proteins

Radic, S., Ke PC, Davis, TP, Ding F., RSC Adv., 2016
Outline

- Multiscale modeling approach
 - DMD simulations
 - Multiscale models
- Uncovering the effects of NPs on protein aggregation
 - Varying NP-Protein attractions
 - Competing aggregation in solution and on NP surface
 - A complete picture of protein aggregation influenced by NPs
- Applications of anti-amyloid Nanomedicine
 - Graphene oxide
 - Dendrimer
Graphene oxide inhibits IAPP aggregation and cytotoxicity
Graphene oxide sequesters IAPP

Nedumpully-Govindan et al, PCCP, 18:94-100 (2016)
Biophysical characterization of GO-IAPP interaction

Nedumpally-Govindan et al, PCCP, 18:94-100 (2016)
GO reduces cytotoxicity of IAPP

Control

GO

hIAPP

hIAPP + GO

Cell death (%)
n=4, One–way ANOVA (24 h treatment)

Nedumpully-Govindan et al, PCCP, 18:94-100 (2016)
PAMAM dendrimer inhibits IAPP aggregation and cytotoxicity
PAMAM dendrimer binds the amyloidogenic region of Amyin monomer
PAMAM dendrimer inhibits dimerization

E.N. Gurzov et al, Small, in press (2016)
Biophysical characterization of the anti-aggregation effects – DLS, ThT, TEM

E.N. Gurzov et al, Small, in press (2016)
Inhibition of IAPP cytotoxicity *in vitro* and *ex vivo*

E.N. Gurzov et al, Small, in press (2016)
Summary

- A multiscale approach for modeling protein aggregation at the Nano-Bio interface with long time scales and large system sizes
- A mechanistic insight about the complex and seemingly contrasting effects of NPs on amyloid aggregation
- Utilizing the anti-aggregation effects of NPs for anti-amyloid nanomedicine design.
Acknowledgement

Bo Wang
Xinwei Ge
Praveen Nedumpully-Govindan, PhD
Slaven Radic, PhD

Funding:

Thomas P. Davis, PhD
Pu-Chun Ke, PhD
Esteban Gurzov, PhD
Emily Pilkington
Aleksandr Kakinin, PhD

NSF
NIH
EPA
CU