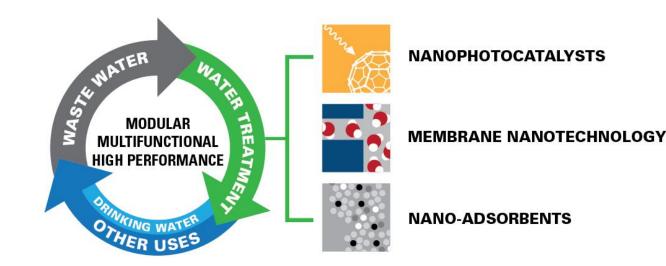
### A Nano-Enabled Water Treatment Laboratory To Teach Earth Sciences And Chemistry Through Nanotechnology

### Charles Dahill, Ana Barrios, and François Perreault

Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment

> School of Sustainable Engineering and the Built Environment Ira A. Fulton Schools of Engineering Arizona State University






- NEWT RET program
- Challenges of Nano-Education in High School
- Proposed activity
- Results
- Moving forward



# Leap-frogging opportunities to:

- Develop <u>small</u>, <u>high-performance</u>, <u>multifunctional</u> materials & systems that are easy to deploy, can tap unconventional water sources, and reduce the cost of remote water treatment
- Transform predominantly chemical treatment processes into modular and more <u>efficient catalytic and physical processes</u> that <u>exploit the solar spectrum and generate less waste</u>





### **NEWT – Overarching goals**

# **Focus on Two POU Applications**

 Off-grid humanitarian, emergency-response, and domestic drinking water treatment systems



https://www.globalgiving.co.uk/projects/clean-water-for-peru/updates/







http://switchboard.nrdc.org/blogs/rhammer/fracking-2.jpg





www.visbegroup.com

### **Public acceptable of Nanotechnology**

Concerns from the public and the scientific community over the risks of nanotechnology



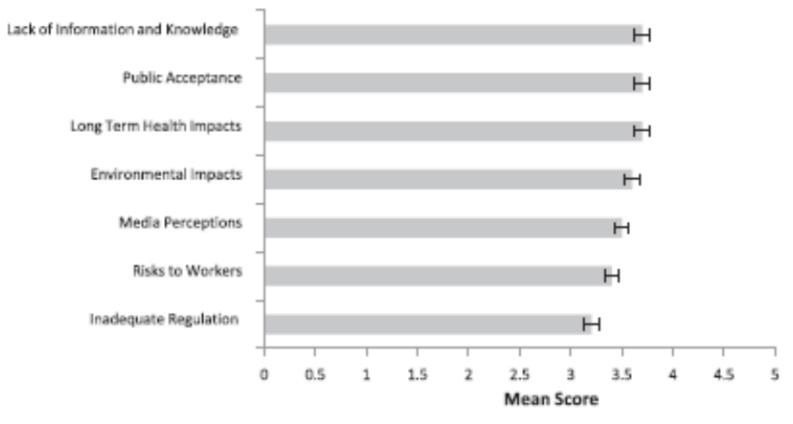


### Are carbon nanotubes safe? Zhao et al., Nature, 2008

EPA Needs to Manage Nanomaterial Risks More Effectively

US EPA report 12-P-0162, 2011

The challenges of nanotechnology riskmanagement☆Fadel et al. Nano Today




b

### Why people fear nano?

Risks for the Implementation of Nanotechnology

#### (Strongly Disagree =1 Strongly Agree =5)



Public knowledge and public perception are often considered barriers to the implementation of nanotechnology

Handford et al. Food Control 2015



# **NEWT RET program**



- Secondary science teachers and faculty from partner community college spend 10 weeks in NEWT labs to
- Conduct nanotechnology research
- Develop new nano-themes educational activities



# **Practical**

- Small lab budgets
- Limited lab time (~1h)
- Hazardous chemicals should be avoided

# **Educational**

- Small or no background knowledge
- Nanotechnology is not on the curriculum not a lot of time to spend on it



# What's on the curriculum?

### **Concept 1: Structure and Properties of Matter**

Understand physical, chemical, and atomic properties of matter.

- PO 1. Describe substances based on their physical properties.
- PO 2. Describe substances based on their chemical properties.
- PO 3. Predict properties of elements and compounds using trends of the periodic table (e.g., metals, non-metals, bonding ionic/covalent).
- PO 4. Separate mixtures of substances based on their physical properties.
- PO 5. Describe the properties of electric charge and the conservation of electric charge.
- PO 6. Describe the following features and components of the atom:
  - protons
  - neutrons
  - electrons
  - mass
  - number and type of particles
  - structure
  - organization
- PO 7. Describe the historical development of models of the atom.
- PO 8. Explain the details of atomic structure (e.g., electron configuration, energy levels, isotopes).



# What's on the curriculum?

| <b>Concept 1: Geochemical Cycles</b><br>Analyze the interactions between the Earth's structures, atmosphere, and geochemical cycles.                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1. Identify ways materials are cycled within the Earth system (i.e., carbon cycle, water cycle, rock cycle).                                                                    |
| PO 2. Demonstrate how dynamic processes such as weathering, erosion, sedimentation, metamorphism, and<br>orogenesis relate to redistribution of materials within the Earth system. |
| PO 3. Explain how the rock cycle is related to plate tectonics.                                                                                                                    |
| PO 4. Demonstrate how the hydrosphere links the biosphere, lithosphere, cryosphere, and atmosphere.                                                                                |
| PO 5. Describe factors that impact current and future water quantity and quality including surface, ground, and local water issues.                                                |
| PO 6. Analyze methods of reclamation and conservation of water.                                                                                                                    |
| PO 7. Explain how the geochemical processes are responsible for the concentration of economically valuable minerals and ores in Arizona and worldwide.                             |

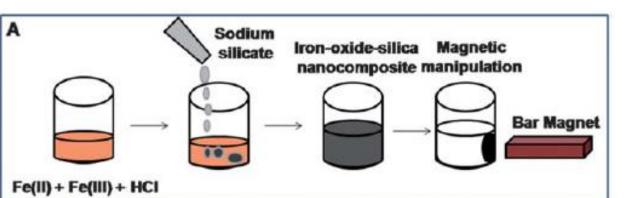
**Objective**: Teach nanotechnology concepts through a nanotechnology and water treatment laboratory while supporting the current curriculum

### **Experiment**

### Journal of Materials Chemistry A

### RSCPublishing

#### PAPER


Cite this: J. Mater. Chem. A, 2013, 1, 2022

One pot synthesis of magnetite-silica nanocomposites: applications as tags, entrapment matrix and in water purification<sup>†</sup>

Mangesh Kokate,<sup>ab</sup> Kalyanrao Garadkar<sup>\*b</sup> and Anand Gole<sup>\*a</sup>







Two session lab activity

- 1. Synthesis of nano-magnetite
- 2. Removal of a model contaminant (methylene blue)





# **Evaluation**

### Pre-lab

- 1. What are some major sources for water contamination within the state?
- 2. What methods do you think we could use to clean the water?

### Mid-lab

- 1. Describe the evidence of chemical reactions occurring while creating the mineral.
- 2. What mineral do you think you created? Hint: use the colors you saw in the solution and the formula for the two salts and the textbook.
- 3. How do you think it will clean contaminates out of water?
- 4. How will you remove the mineral and contaminates from the water?

### Post-lab

- 1. Describe some locations or scenarios where this form of water purification could be used.
- 2. How is what you did a form of nanoengineering?
- 3. What fields of science seem important for nanoengineering?
- 4. How is what you did a form of environmental engineering?
- 5. What fields of science seem important for environmental engineering?



### **Concepts covered**

### **Concept 1: Geochemical Cycles**

Analyze the interactions between the Earth's structures, atmosphere, and geochemical cycles.

- PO 5. Describe factors that impact current and future water quantity and quality including surface, ground, and local water issues.
- PO 6. Analyze methods of reclamation and conservation of water.

#### **Concept 1: Structure and Properties of Matter**

Understand physical, chemical, and atomic properties of matter.

- PO 1. Describe substances based on their physical properties.
- PO 2. Describe substances based on their chemical properties.
- PO 3. Predict properties of elements and compounds using trends of the periodic table (e.g., metals, non-metals, bonding ionic/covalent).
- PO 4. Separate mixtures of substances based on their physical properties.



### **Synthesis**



Successful synthesis can be clearly visualized after the reaction.

- Visual correlation between the nature of the material and its properties.



### **Evaluation**

1. Describe the evidence of chemical reactions occurring while creating the mineral.

changed color, became turbid, formed a solid.

2. What mineral do you think you created? Hint: use the colors you saw in the solution and the formula for the two salts and the textbook.

Iron-based mineral

3. How will you remove the mineral and contaminates from the water?

Using the magnetic properties of the material Magnetite



### **Adsorption experiment**



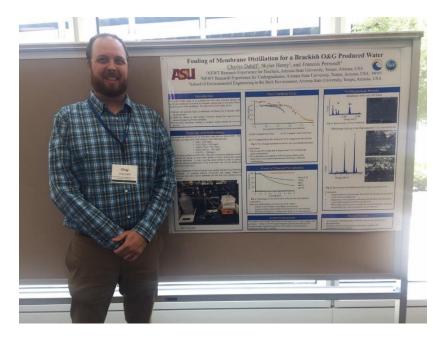
- Large variation in the performance of the different synthesis.
- All black material removed MB quite well, but not all responded well to the magnet.







# **Evaluation**


- 1. Describe some locations or scenarios where this form of water purification could be used.
  - Oil spills
  - Lake water purification
  - Areas with metallic pollutants/rust
  - Poor areas
- 2. How is what you did a form of nanoengineering?
  - Made a chemical compound/reaction to purify water
  - Made something at the atomic scale
  - Particles of iron come together to separate metals from water
- 3. What fields of science seem important for nanoengineering?
  - Chemistry was the most common answer
  - Environmental sciences
  - Earth sciences



- A nanotechnology lab was developed and tested
- Fits in the curriculum and appropriate for a high school settings
- Students were able to express what happened in clear, explainable ways
- Need to make the reaction more robust
- Expand the discussion to include applications of nanotechnology to other fields



### Acknowledgements













### Acknowledgements



# Thank you!



### Pre-lab

- 1. What are some major sources for water contamination within the state?
  - -factory waste, oil pollution, sewage, river dumping, agricultural pollution, dead animals"
- 2. What methods do you think we could use to clean the water?
  - Filtration
  - Boiling/distillation
  - Chlorine

Students are aware of common sources of contamination for water, and of some conventional methods for water treatment