Photocatalytic degradation of ibuprofen by base-modified Bi$_2$WO$_6$ under visible light

Bangxing Ren1, Ying Huang1, Mallikarjuna Nadagouda2, Dionysios D. Dionysiou1

1Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, USA.

2Center for Nanoscale Multifunctional Materials, Mechanical & Materials Engineering, Wright State University, Dayton, OH USA.

Email: dionysios.d.dionysiou@uc.edu
The Structure and Chemistry of Bismuth Tungstate (Bi₂WO₆)

- Aurivillius family, \((\text{Bi}_2\text{O}_2)(\text{A}_{n-1}\text{B}_n\text{O}_{3n+1})\)

- Alternating \((\text{Bi}_2\text{O}_2)_{n}^{2n^+}\) layers and \((\text{WO}_4)_{n}^{2n^-}\) layers, W is 6-coordinated and occupies octahedral sites

- \(\text{Bi}_2\text{WO}_6\) can be considered as a mixed oxide of \(\text{Bi}_2\text{O}_3\) and \(\text{WO}_3\), shares similarity with them in terms of structure and chemistry

- pH plays a significant role when determine the main species of Bi and W in the synthesis solutions

- Schematic structure of \(\text{Bi}_2\text{WO}_6\).
 - red: O; magenta: Bi; white: W
 - yellow plane: (010)

\[
\text{WO}_3\text{·H}_2\text{O} \leftarrow [\text{H}_2\text{W}_{12}\text{O}_{42}]^{10^-} \leftarrow [\text{W}_7\text{O}_{24}]^{6^-} \quad \ldots \quad \leftarrow \text{WO}_4^{2^-}
\]

Acidic: \(\text{Bi}^{3+} \rightarrow \text{Bi oxynitrate} \rightarrow \ldots \rightarrow \text{Bi}_2\text{O}_3\)
Base Modification of Bi$_2$WO$_6$ for Enhanced Photocatalytic Activity under Visible Light

❖ **Pristine Bi$_2$WO$_6$**

Hydrothermal approach with feeding ratios Bi:W =1 (BWO-1) and Bi:W =2 (BWO-2), pH was adjusted with NaOH to 7 before heating at 200 °C for 20 h.

❖ **Novelty: Base-modified Bi$_2$WO$_6$**

1 mmol (0.7 g) of pristine Bi$_2$WO$_6$ was dispersed in 80 ml of NaOH solution with concentrations ranging from 0.5 M to 10 M. The dispersion was sonicated for 15 min. The obtained samples were denoted as X-BWO-1 or X-BWO-2, X is the concentration of NaOH solution.

❖ **Test of photocatalytic performance**

Light source: 300 W Xenon arc lamp with optical filter (420-690 nm)

Total of 50 ml reaction matrix with different parameters was kept in dark for 30 min before irradiation. Initial pH was adjusted with 0.1 M H$_2$SO$_4$ or NaOH when necessary.
Characterization of Base-Modified of Bi₂WO₆

- XRD patterns of samples (0.5/1/2.5/5-BWO-1, BWO-1, and BWO-2).
Characterization of Base-Modified of Bi$_2$WO$_6$

- Nanoplates less than 50 nm aggregated and stacked for BWO-1
- Nanoplates with around 500 x 100 nm (length x thickness) for BWO-2
- Edges of the nanoplates of 1-BWO-1 were rounded and smoothened after base modification

SEM images of BWO-1 (a), BWO-2 (b), and 1-BWO-1 (c)

- Table: properties of synthesized Bi$_2$WO$_6$.

<table>
<thead>
<tr>
<th>Property</th>
<th>1-BWO-1</th>
<th>BWO-1</th>
<th>BWO-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D_{(131)}$ (nm)</td>
<td>235</td>
<td>238</td>
<td>526</td>
</tr>
<tr>
<td>W:Bi (EDS) c</td>
<td>0.46</td>
<td>0.67</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Characterization of Base-Modified of Bi₂WO₆

- BET surface areas are 15.4, 18.8, and 3.0 m²/g for 1-BWO-1, BWO-1, and BWO-2, respectively.
- Type III isotherm for BWO-2, nonporous solid.
- Type II isotherm for 1-BWO-1 and BWO-1, macroporous materials; Type H3 hysteresis loops, which are given by aggregates of plate-like particles.
- Small amount of mesopores were eliminated by base modification.

❖ N₂ adsorption-desorption isotherm of 1-BWO-1, BWO-1, BWO-2
❖ Pore size distribution of 1-BWO-1, BWO-1, BWO-2
Characterization of Base-Modified of Bi$_2$WO$_6$

- Base modifications with 0.5 to 5 M NaOH had no effects on optical absorbance.
- Band gaps of 0.5/1/2.5/5-BWO-1 and BWO-1 are roughly the same, 2.8 eV.
- Bi$_2$O$_3$ has higher absorbance of visible light, with smaller band gap, 2.7 eV.
- BWO-2 has similar visible light absorbance to that of BWO-1, but slightly stronger absorbance of UV.

❖ UV-vis reflectance spectrum for Bi$_2$WO$_6$ samples.

❖ Tauc plots of the Kubelka–Munk function for Bi$_2$WO$_6$ samples.
Photocatalytic Degradation of Ibuprofen (IBP) by Bi$_2$WO$_6$ under Visible Light

❖ Enhanced Photocatalytic Activity of Base-modified Bi$_2$WO$_6$

![Graph showing photocatalytic degradation of IBP](image)

Ibuprofen (IBP)

❖ BWO-1 has the highest specific surface area.

❖ The band gap of 0.5~5-BWO-1 and BWO-1 are similar, 2.8 eV.

✓ The ratio of W to Bi significantly affects the photocatalytic activity of Bi$_2$WO$_6$.

❖ Photocatalytic removal of IBP by Bi$_2$WO$_6$ under visible light

$C_{Cata} = 0.1 \text{ g/L, } C_{0-IBP} = 5 \mu\text{M, } pH_i = 5.6, V= 50 \text{ ml.}$
Photocatalytic Degradation of Ibuprofen by Bi$_2$WO$_6$ under Visible Light

❖ Effect of pH on photocatalytic degradation of IBP by 1-BWO-1

- pH$_{pzc}$ of base-modified samples were dramatically increased
- Optimal pH value is 5.6 where 1-BWO-1 and IBP bear opposite charges
- Photocatalytic efficiency as well as adsorption of IBP decreased when pH <5.6 or pH >5.6

\[pK_{a_{IBP}} = 5.2 \]

<table>
<thead>
<tr>
<th>pH$_{pzc}$</th>
<th>1-BWO-1</th>
<th>BWO-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td></td>
<td>5.1</td>
</tr>
</tbody>
</table>

❖ Effect of pH on IBP degradation with 1-BWO-1 under visible light

\[C_{Cata} = 0.1 \text{ g/L} \]
\[C_{0-IBP} = 5 \text{ μM} \]
\[V = 50 \text{ ml} \]

❖ First-order rate constants of degradation of IBP under different pH values
Photocatalytic Degradation of Ibuprofen by Bi$_2$WO$_6$ under Visible Light

❖ Effect of ionic strength and phosphate on photocatalytic degradation of IBP by 1-BWO-1

- Complete inhibition of IBP degradation by 1-BWO-1 with presence of phosphate

- Phosphate ions have strong affinity for the surface of 1-BWO-1 by forming BiPO$_4$, which inhibit the adsorption of IBP

- Adding 10 mM NaClO$_4$ only caused slight decrease to the degradation of IBP

- Independence of ionic strength indicates there is a strong inner-sphere complexation between IBP and active sites on the surface of 1-BWO-1

❖ Effect of ionic strength and phosphate on IBP degradation with 1-BWO-1 under visible light,

\[C_{\text{Cata}} = 0.1 \text{ g/L}, \quad C_{0-\text{IBP}} = 5 \mu\text{M}, \quad V = 50 \text{ ml}. \]
Photocatalytic Degradation of Ibuprofen by Bi_2WO_6 under Visible Light

❖ Identification of reactive species in the degradation of IBP by 1-BWO-1

- Isopropanol (IPA) —— \cdotOH
 minor contribution

- p-benzoquinone (pBQ) —— $O_2^{\cdot-}$
 minor contribution

- Triethanolamine / Formic acid
 (TEOA/FA) —— h^+
 complete inhibition, primary species

- AgNO_3 —— e^-
 facilitate h^+/e$^-$ separation

Photocatalytic removal of IBP by 1-BWO-1 with presence of various scavengers under visible light.

$C_{\text{Cata}} = 0.1$ g/L, $C_{0-\text{IBP}} = 5 \mu\text{M}$, $pH_i = 5.6$, $V = 50$ ml.
$C_{0-\text{TEOA}} = C_{0-\text{FA}} = C_{0-\text{IPA}} = C_{0-\text{AgNO}_3} = 5$ mM, $C_{0-p\text{BQ}} = 0.5$ mM.
Possible mechanism for the photocatalytic reaction of base-modified Bi$_2$WO$_6$

![Diagram showing energy levels and charge transfer in a photocatalytic process.]

- $E_g = 2.8$
- CB at -0.55
- VB at 2.25
- O_2^- at -0.3
- O_2^- to H_2O_2 to $\cdot\text{OH}$

Mechanism of Bi$_2$WO$_6$ photocatalytic process:

- Higher affinity towards molecular oxygen and contaminant molecules;
- Positions of VB and CB shift to more positive side
Photocatalytic Degradation of Ibuprofen by Bi$_2$WO$_6$ under Visible Light

❖ Reusability and stability of 1-BWO-1 during the degradation of IBP

- Catalysts were collected and washed with ethanol for three times, and then dried at 40 °C overnight
- Removal efficiency dropped slightly from 90 % to 82 % after 5 runs
- Good stability of 1-BWO-1 suggests that base modification is also able to create structural changes on the surface

❖ Photocatalytic removal of IBP in five cycles by 1-BWO-1 under visible light

$C_{\text{Cata}} = 0.1 \text{ g/L, } C_{0-\text{IBP}} = 5 \mu\text{M, } pH_i = 5.6, V= 50 \text{ ml.}$
Conclusions

- NaOH was used to successfully modified the surface of Bi$_2$WO$_6$.

- After base modification, band gap and BET surface area did not change significant, the ratio of W to Bi decreased and the pH$_{pzc}$ increased from 5 to 9.

- Besides, base modification improved the removal efficiency of ibuprofen by Bi$_2$WO$_6$ under visible light.

- Photo-generated h$^+$ plays a significant role for the degradation of ibuprofen by 1-BWO-1 under visible light.

- XPS, FTIR, Raman, and EPR will be analyzed to further understand the mechanisms of improved photocatalytic activity of Bi$_2$WO$_6$ by base modification.
ACKNOWLEDGEMENT

- We acknowledge the financial support from National Academy of Sciences through the U.S. - Egypt Science and Technology (S&T) Joint Fund (1012770).

- Bangxing Ren and Ying Huang also acknowledge the support of China Scholarship Council

Disclosure: This project is funded in whole or part by NAS and USAID, and that any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the authors alone, and do not necessarily reflect the views of USAID or NAS.