Mapping the carbon nanotube formation parameter space: Data mining and mechanistic understanding for efficient resource use

Wenbo Shi, Ke Xue, Eric R. Meshot, Desiree L. Plata
Department of Chemical and Environmental Engineering
Yale University
2017 SNO Conference
CNTs in Spotlight

Booming interests

Widespread applications

Composite

Aligned CNTs

Fabric & Interconnects

Nanodevice

Environmental Energy

Image Courtesy of De Volder Group at Cambridge

De Volder et al. Science, 2013
Delayed Environmental Investigation

Topic: “carbon nanotube”

(a)

(b)

Topic: “carbon nanotube” AND “environmental impact”

ISI Web of Science database
partial data for 2016

Shi et al. Green Chemistry, 2017
Sustainable CNT Production Challenges: Energy and Resources

Chemical Process

Operating system

Heterogeneous catalytic interface

Tube furnace
Address Challenges: Looking Backward

Backward:
- universal mechanistic insights might exist inside widespread recipe formulations
- inform green synthesis design

Forward: manufacturing innovations
- More efficient precursor
 Alkynes growth
- More sustainable resources
 Gaseous product mixture from Fischer-Tropsch synthesis
 Upcycling waste plastics
 Electrochemical conversion of CO₂
- Reactor modifications
 Continuous manufacturing
 Gas flow direction control
 Cold-walled reactor
Data Extraction

Chosen groups

Topic: “carbon nanotube” AND “growth” AND “chemical vapor deposition”

Searched results: 2744

Collected parameters

Energy
- Temperature

Resource
- C_xH_y source
- C_xH_y flow rate
- H_2 flow rate
- Carrier gas type
- Carrier gas flow rate
- Enhancer type
- Enhancer concentration
- Catalyst

Other
- Reactor type
- Reactor size

ISI Web of Science database
Pattern 1: Temperature Dependence
Clarify Potential Biases: Experiments

![Graph showing mass yield vs. temperature with different gas mixtures]
Implication of Temperature Decrease

Thermal Loss Model

Energy saving: 1.3×10^{11} J/kg CNTs
Annual production: 2.2×10^6 kg/year

$=2.9 \times 10^{17}$ J/year ~ 7 million US household electricity consumption

Shi et al. Green Chemistry, 2017
Pattern 2:
Material Demand: C and H loading

CH₄: high C loading

C₂H₂: low C loading

Shi et al. Green Chemistry, 2017
Varied H_2 dependence

![Graphs showing proportion of $\text{H}_2/C_{x}H_{y}$ for different compounds: CH_4, C_2H_4, and C_2H_2.](image)

Shi et al. Green Chemistry, 2017
Role of H$_2$

Enhanced yield

- 10% C$_2$H$_4$
- 10% C$_2$H$_4$ + 10% H$_2$

Improved quality

- 10% C$_2$H$_4$ @ 800 °C
- 10% C$_2$H$_4$ + 10% H$_2$ @ 800 °C

Diameter tuning

- 10% C$_2$H$_4$
- 10% C$_2$H$_4$ + 10% H$_2$

Enhanced yield:
- 10% C$_2$H$_4$
- 10% C$_2$H$_4$ + 10% H$_2$

Improved quality:
- 10% C$_2$H$_4$ @ 800 °C
- 10% C$_2$H$_4$ + 10% H$_2$ @ 800 °C

Diameter tuning:
- 10% C$_2$H$_4$
- 10% C$_2$H$_4$ + 10% H$_2$
Atom Carbon Efficiency

$$\text{Atomic Efficiency} = \frac{\text{C mass in CNT}}{\text{C mass in input precursor}}$$

<table>
<thead>
<tr>
<th>Growth Condition</th>
<th>Atomic Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Futaba et al. (Hata Group, 10% C\textsubscript{2}H\textsubscript{4}, 750 °C)</td>
<td>0.042%</td>
</tr>
<tr>
<td>Li et al. (Hart Group, 17% C\textsubscript{2}H\textsubscript{4}, 775 °C)</td>
<td>0.050%</td>
</tr>
<tr>
<td>Plata et al. (20% C\textsubscript{2}H\textsubscript{4}, 725 °C, cold-wall reactor)</td>
<td>0.002%</td>
</tr>
<tr>
<td>Plata et al. (Alkyne-assisted 20% C\textsubscript{2}H\textsubscript{4}, 725 °C, cold-wall reactor)</td>
<td>0.026%</td>
</tr>
<tr>
<td>10% C\textsubscript{2}H\textsubscript{4}, 800 °C</td>
<td>0.038%</td>
</tr>
<tr>
<td>10% C\textsubscript{2}H\textsubscript{4} + 10% H\textsubscript{2}, 800 °C</td>
<td>0.061%</td>
</tr>
<tr>
<td>1% C\textsubscript{2}H\textsubscript{2}, 800 °C</td>
<td>0.42%</td>
</tr>
</tbody>
</table>

Shi et al. Green Chemistry, 2017
Mechanistic Insights
Future Work

➢ Should be automated for high-throughput screening

➢ Methodology transferable to green synthesis of other novel materials

➢ Link product application performance to synthetic methodologies

Image courtesy of Kong group at MIT
Temperature evolution

(a) 750 °C
(b) 800 °C
(c) 850 °C
(d) 900 °C
(e) 950 °C
(f) 1000 °C