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Nanoparticle Surfaces – A Closer Look
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Complex Interactions at the Aqueous-Nanoparticle Interface
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Figure 2: Schematic representation of a typical ATR-FTIR experimental setup. 

Mudunkotuwa, Al Minshid, and Grassian Analyst 2014, 139, 870-881.

Monitoring Surface Composition and Surface Chemistry 

ATR-FTIR Spectroscopy to Probe Nanoparticle Surfaces
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Surface Speciation Can Be Followed in Different Aqueous Environments



Environmental Science: Nano 2014, 1, 123 - 132.

Iron Oxide Nanoparticles Inhibition of Anti-Microbial Peptides 



AMP Less Effective Due in Part to 

Irreversible  Adsorption on Nanoparticle 

Surface and Loss of Activity

protein

phosphate

AMPs Adsorb to Nanoparticle Surfaces 

ATR-FTIR Spectroscopy Shows that AMPs Adsorb to 

Nanoparticle Surface in an an Irreversible Manner



Surface Composition Can Be Dynamic

citric acid
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humic acid



Ligands exchange affecting solubility 

in different polar solvents2

Surface ligands affecting 

photocatalytic process on the 

surface1 Co-existed phosphate molecules changing
Humic acid (HA) binding resulting in different
electron transfer pathways3

➢ Natural water system has a wide
range of organic and inorganic
ligands (e.g. phosphate, acetate,
citrate, humic acid and fulvic acid).

Displacement
reactions on
nanoparticle
surfaces

➢ Citrate is also widely used as ligands for
many nanomaterials.

displaced

1. Ou et. al. J. Mol. Catal. A: Chem., 2005, 241, 59;
2. Dong et. al. J. Am. Chem. Soc. 2011, 133, 998;
3. Long et. al. Environ. Sci. Technol., 2017, 51, 514.

Displacement Reactions Can Impact A Range of Behaviors



Citric Acid-Humic Acid:  A Changing Surface
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Co-Adsorption of Citric and Humic Acid

TiO2TiO2



Organic-coated NPs

Crude Oil

NOM in Seawater
Crude oil

NOM coated NPs

OR

NP Surfaces During A Simulated Environmental Application

Oil Spill Cleanup
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• Wide range of pH in different environmental/biological media 

• Chemical speciation of solution phase molecules vary as a f(pH)

• Biomolecule  secondary and tertiary structures changes as a f(pH)

• Surface functionality varies as a f(pH)

• Dissolution depends on pH (implications for nanotoxicity)

Role of pH in Nanoparticle-Biological/Environmental Interactions



Citric Acid 

pKa1 = 3.13

pKa2 = 4.76

pKa3 = 6.40

Aqueous Phase Speciation of Citric Acid

pH Dependent Changes in Molecular Structure 

Are Reflected in ATR-FTIR Spectra 

Henderson–Hasselbalch equation

Speciation as a f(pH)

http://upload.wikimedia.org/wikipedia/commons/c/c5/Zitronens%C3%A4ure_-_Citric_acid.svg


Biological Molecules Including Amino Acids and Proteins

• Histidine found in many of the active sites in proteins

(e.g. hemoglobin, carbonic anhydrase, histidine kinase)

• Three pKa values:

pKa1= 1.70 pKa2= 6.04 pKa3= 9.09
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Özcan, A. A.; Say, R. d.; Denizli, A.; Ersöz, A. Analytical Chemistry 2006, 78, 7253-7258

Heyda, J.; Mason, P. E.; Jungwirth, P. The Journal of Physical Chemistry B 2010, 114, 8744-8749
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BSA form and dimensional changes as a function of pH 

Carter, D. C.; Ho, J. X. Adv. Protein Chem. 1994, 45 (45),153–203

– Common blood protein with high abundance

– BSA has similar properties with its human variant 

(shares 98% percent amino acid sequence)

– Molecular weight: 66,463 Da (= 66.5 kDa)

Protein Structure Depends on pH: Bovine Serum Albumin (BSA)



Nanoparticle Surface pH Dependence: 
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 Bands intensity increases over time

 Adsorption depends on substrate

➢ Amide I (ca. 1650) and Amide 

II (ca. 1550) bands observed 

in the spectra

➢ pH effect especially obvious 

for BSA on TiO2 at pH 2.0

➢ Greater intensity and larger 

peak shifts (relative to 

solution) for BSA on TiO2

BSA Adsorption on 20 nm SiO2 and TiO2 Surfaces 

 Adsorption depends on pH

Givens, B.; Xu, Zhenzhu; Fiegel, J.; Grassian, V.H. Journal 

of Colloid and Interface Science 2017, 493, 334-341.

A Tale of Two Nano-Bio Surface Interactions



Secondary structures of protein

Amide I Band Used for Structure Analysis

https://www.boundless.com/biology/textbooks/boundless-biology-textbook/biological-

macromolecules-3/proteins-56/protein-structure-304-11437/

Roach, Paul, David Farrar, and Carole C. Perry. "Surface tailoring for controlled protein adsorption: effect of topography at the 

nanometer scale and chemistry." Journal of the American Chemical Society 128.12 (2006): 3939-3945.

Secondary structure
Vibrational frequency (cm-

1)

β-sheets/turns 1685-1663

α-helices 1655-1650

Random chains 1648-1644

Extended chains/β-

sheets
1639-1621

Side chain moieties 1616-1600

Secondary structural analysis

➢ Curve fitting

H-bonding

H-bonding

twisting

folding



Secondary Protein Structural Analyses of BSA

Solution phase compared to adsorbed 

TiO2 compared to SiO2

pH 7.4 compared to 2.0 

Normalized BSA amide I band for secondary 

structural analysis through curve fitting

Secondary structure Vibrational frequency (cm-1)

β-sheets/turns 1685-1663

α-helices 1655-1650

Random chains 1648-1644

Extended chains/β-

sheets
1639-1621

Side chain moieties 1616-1600

pH Secondary structure Solution phase BSA  

Adsorbed BSA  

on SiO2 

(Δ from solution)a 

Adsorbed BSA  

on TiO2 

(Δ from solution)a 

7.4 β-sheets/turns 5 9 (+4) 9 (+4) 

α-helices 68 59 (-9) 51 (-17) 

Random chains 4 15 (+11) 13 (+9) 

Extended chains/β-sheets 20 12 (-8) 23 (+3) 

Side chain moieties 3 5 (+2) 4 (+1) 

2.0 β-sheets/turns 6 5 (-1) 2 (-4) 

α-helices 60 48 (-12) 30 (-30) 

Random chains 9 15 (+6) 8 (-1) 

Extended chains/β-sheets 19 25 (+16) 24 (+15) 

Side chain moieties 6 7 (+1) 36 (+30) 

 

The secondary structure content (%) in BSA determined via 

curve fitting for BSA in solution and after adsorption on to 

the nanoparticle surfaces; SiO2 and TiO2

a – difference between adsorbed and solution phase structure 

content



Summary of Results: BSA at Circumnetural and Acidic pH

-Protein conformation changes as a function of pH
• Solution phase BSA

• Adsorbed BSA

-Protein conformation upon adsorption 

changes and this  differs on the two oxide 

surface
-Protein interaction is strongest with the TiO2 NP surface

• Higher surface coverage

• Larger change in protein conformation

• Interaction with surface OH groups (possibly as OH2
+) may be 

important for this interaction and that is greatest on TiO2



Impact of Phosphate Adsorption

Effects of co-adsorption of phosphate on protein-surface interaction and protein structure 

BSA adsorption on TiO2 (22 nm) in the presence/absence of phosphate

➢ Phosphate bands (ca. 1117 and ca. 1077) observed in the 

spectra. 

➢ Growth of both protein bands and phosphate indicates 

co-adsorption of phosphate.

➢ Phosphate inhibits BSA from denaturation on TiO2 at 

acidic pH.

Xu, Zhenzhu; Grassian, V.H. 

Journal of Physical Chemistry C 

2017, 121, 21763-21771. 



Impact of Nanoparticle Crystalline Phase

BSA adsorption (pH 2.0)

TiO2 (30 nm)

pure rutile

TiO2 (22 nm)

86% anatase 14% rutile

TiO2 (30 nm)

pure anatase

TiO2 (5 nm)

pure anatase

 Anatase vs rutile: Only anatase can cause complete BSA denaturation upon adsorption at very acidic pH.

 Protein adsorption highly depends on the crystalline phase of TiO2 nanoparticles

A B C D

Zhenzhu Xu
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3pH of Aqueous Phase Impacts 

Nano-Bio Interactions 

Molecular Probes of 

Nanoparticle Surfaces 

Provide Important Insights

Conclusions

Protein Structure Impacted 

Nanoparticle Composition, 

Surface Structure and the 

Presence of Co-Adsorbates
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