The Small Future of Urban Water Systems

David Sedlak Department of Civil & Environmental Engineering UC Berkeley 6th Sustainable Nanotechnology Organization Conference November 5, 2017

Satellite & Decentralized Water

Satellite treatment system for toilet flushing, water features, and other non-potable urban uses

Satellite treatment system for irrigation of city parks, golf courses, and other urban landscape uses

Community type decentralized water reclamation system for production of landscape irrigation water

Gikas and Tchobanoglous (2014)

Residual flow to centralized wastewater treatment facility

Supporting Technologies

Advanced Treatment Technologies

Established Polymeric RO UV/H_2O_2 O_3/BAC

Advanced Treatment Technologies

Established Polymeric RO UV/H_2O_2 O_3/BAC

Developing New membranes -graphene oxide -carbon nanotubes TiO₂ photocatalysis Selective absorbents Electrochemistry

Modular Electrochemical UV/AOP

carbon fiber paper

Open Air Cathode

carbon black PTFE

Liquid Side

graphite powder PTFE

Gas Side

Barazesh et al. (2015)

H₂O₂ Production

H₂O₂ Production

Barazesh et al. (2015)

	1.2
	1.0 -
e (C/C0	0.8 -
arbamazepine	0.6 -
	0.4 -
ö	0.2 -

UV/H₂O₂ Treatment

Barazesh et al. (2015)

Treatment Efficiency

SCIENCE FOR A SAFER WORLD

pH Changes

Iron Removal

Metal Removal

-ΔFe (μM)

Lessons for Small Thinkers

Distributed Advanced Water Treatment Important to Revolutionizing Urban Water • Need for Inexpensive, Reliable Systems

Lessons for Small Thinkers

- **Distributed Advanced Water Treatment** Important to Revolutionizing Urban Water • Need for Inexpensive, Reliable Systems

- Cathodic H₂O₂/UV/Anode Prototype • Employs Proven Technologies Robust and Inexpensive
- - Many Challenges Remain

