Stochastic fate analysis of engineered nanoparticles during release processes, e.g. in an incineration plant

Tobias Walser, Fadri Gottschalk

ETSS Environmental, technical and scientific services

General partnership for research and consultancy, Switzerland

ETH

Institute for Environmental Decisions, Natural and Social Science Interface, ETH Zurich

Sustainable Nanotechnology Conference, Venice, March 2015

Hotspots of nanoparticle emissions

Nanowaste

Products containing engineered nanoparticles at the end of the use phase

LETTERS PUBLISHED ONLINE 20 MAY 2012 | DOI: 10.1038/INNANO.2012.64 nature nanotechnology

Persistence of engineered nanoparticles in a municipal solid-waste incineration plant

Tobias Walser¹, Ludwig K. Limbach², Robert Brogioli³, Esther Erismann⁴, Luca Flamigni³, Bodo Hattendorf³, Markus Juchli⁵, Frank Krumeich³, Christian Ludwig⁶, Karol Prikopsky⁴, Michael Rossier², Dominik Saner¹, Alfred Sigg⁴, Stefanie Hellweg¹, Detlef Günther³ and Wendelin J. Stark^{2*}

No alteration of nano-CeO₂

Walser et al. Nature Nanotechnology, 7, 520–524 (2012)

High removal rate of nano-CeO₂

Walser et al. Nature Nanotechnology, 7, 520–524 (2012)

Aim of the study

- Structure of a dynamic stochastic flow model
- Associated uncertainties with their propagation
- Evidence for consistency of measurement results
- Benefits for future experiments

Walser, T., Gottschalk, F., 2014. Stochastic fate analysis of engineered nanoparticles in incineration plants. Journal of Cleaner Production. 80, 241-251.

Model

Walser & Gottschalk (2014)

Output interpretation

Input data and uncertainty ranges

Walser & Gottschalk (2014)

Model geometry

Some results

time in h

Overall recovery

Walser & Gottschalk (2014)

Conclusion

- Dynamic probabilistic flow model, based on real, time dependent measurements
- Model adds an additional flow in comparison to the measurements
- Consistency of measurement results
- Underlying mass flows are decisive for uncertainty range
- The model can be easily adapted to various types and conditions of MSWI plants

Outlook

- non-rhythmic material transfer, e.g. pulse releases
- inclusion of reactivity and bonding, and other chemical processes
- Added new engineered nanoparticles

... this helps improving fully probabilistic risk evaluation for engineered nanomaterial (ENM)

Gottschalk F, & Nowack B. (2013). Engineered nanomaterials (ENM) in waters and soils: a risk quantification based on probabilistic exposure and effect modelin. *Environ. Toxicol. Chem.*

Coll, C., Notter, D., Gottschalk, F., Sun, T.Y., Som, C., Nowack, B., submitted. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and Fullerenes).

Thank you for your attention!

https://www.etss.ch/

Acknowledgment **Tobias Walser** and : Ludwig K. Limbach, Robert Brogioli, Esther Erismann, Luca Flamigni, Bodo Hattendorf, Markus Juchli, Frank Krumeich, Christian Ludwig, Karol Prikopsky, Michael Rossier, Dominik Saner, Alfred Sigg, Stefanie Hellweg, Detlef Günther, Wendelin J. Stark

Funding from "Prosuite", and "SUN", both research projects under the Seventh Framework Program of the European Commission are acknowledged.

